
Appendix A: Tests for Transition

Probabilities

In this Appendix, we describe tests for random syllable transition dynamics against a

simple first order Markov alternative and summarize the results. The main goal of the tests

is to show that the syllable generation mechanism in male mice under different stimuli is not

completely random. We assumed a first order Markov model for the syllable transitions as

a simple and parsimonious local alternative hypothesis that is powerful to a broad class of

sequential dependence structures. Even if the true data generating model is a higher order

Markov model, a test of the completely random null hypothesis against a simple first order

alternative often provides strong evidence against the null. In simulation experiments, we

generated data using second and third order Markov models and tested the null hypothesis

of complete randomness against a first order Markov alternative. In all the cases tested,

the distribution of the p-values were very highly concentrated near zero. For instance, when

the true data generating model was a second order Markov model, the null hypothesis of

complete randomness was rejected at the 5% and 0.5% levels of significance approximately

97.4% and 97.1% of the times for a single chain comprising 4 states and 500 data points.

Next, consider the problem of comparing different contexts. In this case, when the true

data generating mechanisms are actually higher order Markov, under the null hypothesis of

equality of the mechanisms, their first order approximations are also expected to be close, and

under the alternative hypothesis of different mechanisms, their first order approximations are

also expected to be different. Therefore, in this case also, tests based on first order Markov

models will be powerful for a broader class of higher order alternatives. In simulations, when

we generated two chains each comprising 4 states and 500 data points using two different

second order Markov models and tested the null hypothesis of equality of the transition

mechanisms under a first order assumption, the null hypothesis was rejected at the 5% and

0.5% levels approximately 99.2% and 98.6% of the times. And under the null, when we used

the same second order mechanism to generate the two chains, the test based on the first

order approximation resulted in p-values that were greater than 0.05 87.3% of the time.

For i = 1, . . . , n; j = 1, . . . , K; k ∈ K(j); c ∈ C and t = 1, . . . , Ti,c, let Yi,c,t = k

if the ith subject at the tth time point under the sth context is at state k. Let Yi,c =

(Yi,c,1, . . . , Yi,c,Ti,c)
T. Assuming a first order Markov framework for the transition dynamics,

the likelihood function is given by
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where πk|j(i,c) = Pr(Yi,c,t = k | Yi,c,t−1 = j) for all i = 1, . . . , n and all t = 2, . . . , Ti,c;

nk|j(i,c) =
∑Ti,c

t=2 1(Yi,c,t−1 = j, Yi,c,t = k), the total number of transitions from syllable j

to syllable k by the ith mouse under context c. Also, πk|(i,c) = Pr(Yi,c,1 = k), the initial

distribution probabilities under context c; and n1
k(i,c) = 1(Yi,c,1 = k).

For the mice data set, we have n = 12, K = {d,m, s, u, x}, where for notational

convenience we represent the state ‘silence’ by ‘x’; K(j) = K for j = {d,m, s, u} but

K(x) = {d,m, s, u}; and S = {UR,FE,AF,AM}. K(x) is different from other K(j)′s,

since by the nature of the experiment, there is no self transition from the x to itself.

Test for Transition Probabilities across Contexts:

To test the randomness of the syllable generation mechanism, it is then natural to test

whether knowing the previous syllable in anyway changes the probability of observing the

next syllable. In other words, we would like to test if the probability of a mouse choosing

the syllable k under a context c depends on the previously used syllable or the mouse is

generating the syllable k simply according to its overall preference for k under the context

c. Therefore, we would like to test if πk|j(i,c) ∝ πk|(i,c) for all k ∈ K(j) for all i, c, where

πk|(i,c) denotes the overall preference of the ith mouse to select syllable k under context c.

Since
∑

k∈K πk|(i,c) = 1 and
∑

k∈K(x) πk|x(i,c) = 1, for j ∈ {d,m, s, u} we would like to test

if πk|j(i,c) = πk|(i,c) for all k ∈ K. Similarly, when j = x, since self-transitions are no longer

allowed, we would want to test if πk|x(i,c) = πk|(i,c)(1− πx|(i,c))−1 for k ∈ K(x) = {d,m, s, u}.

d m s u x
d πd|d(i,c) πd|m(i,c) πd|s(i,c) πd|u(i,c) πd|x(i,c)
m πm|d(i,c) πm|m(i,c) πm|s(i,c) πm|u(i,c) πm|x(i,c)
s πs|d(i,c) πs|m(i,c) πs|s(i,c) πs|u(i,c) πs|x(i,c)
u πu|d(i,c) πu|m(i,c) πu|s(i,c) πu|u(i,c) πu|x(i,c)
x πx|d(i,c) πx|m(i,c) πx|s(i,c) πx|u(i,c) -

Total 1 1 1 1 1

Table 1: Table of transition probabilities.

d m s u x
d πd|(i,c) πd|(i,c) πd|(i,c) πd|(i,c) πd|(i,c)/{1− πx|(i,c)}
m πm|(i,c) πm|(i,c) πm|(i,c) πm|(i,c) πm|(i,c)/{1− πx|(i,c)}
s πs|(i,c) πs|(i,c) πs|(i,c) πs|(i,c) πs|(i,c)/{1− πx|(i,c)}
u πu|(i,c) πu|(i,c) πu|(i,c) πu|(i,c) πu|(i,c)/{1− πx|(i,c)}
x πx|(i,c) πx|(i,c) πx|(i,c) πx|(i,c) -

Total 1 1 1 1 1

Table 2: Null hypothesis to test.

The null hypothesis of interest is H0 : πk|j(i,c) ∝ πk|(i,c) for all j ∈ K, k ∈ K(j) for all

i = 1, . . . , n and all c ∈ C. A combined Pearson’s chi-squared test statistic for testing H0 is
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given by

Tχ2 =
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where π̂k|(i,c) and π̂k|j(i,c) are the mle of πk|(i,c) and πk|j(i,c), respectively, under H0. For fixed

i, c pair, the likelihood function is given by

L({Yi,c}ni=1, {πk|(i,c)}k∈K , {πk|j(i,c)}j∈K,k∈K(j)) =
∏
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Under H0, the likelihood reduces to

L({Yi,c}ni=1, {πk|(i,c)}k∈K , {πk|(i,c)}k∈K) =
∏
k∈K

π
n1
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−n|x(i,c) ,

where nk|(i,c) =
∑

j∈K nk|j(i,c) and n|x(i,c) =
∑

k∈K(x) nk|j(i,c). The first part is again indepen-

dent multinomial and so we have π̂k|(i,c) = n1
k(i,c). To avoid the problem of estimation of

the initial distribution parameters based on only a single observation, all the mice may be

assumed to have the same initial distribution. Assumptions on these independent nuisance

distributions do not affect the test of interest as in either case the contribution of the initial

distributions to the test statistic vanishes and a combined test statistic is obtained as

Tχ2 =
n∑
i=1

∑
c∈C

∑
j∈K

∑
k∈K(j)

1{nj(i,c) > 0}
(nk|j(i,c) − nj(i,c)π̂k|j(i,c))2

nj(i,c)π̂k|j(i,c)
.

Here we used the sum of the individual Tχ2 values for different (i, c) pairs to test the combined

null hypothesis. Such tests are highly conservative, i.e., a significant p-value may be taken

to indicate very strong evidence against the combined null hypothesis. The mle’s π̂k|j(i,c) are

functions of π̂k|(i,c), the mle’s of πk|(i,c), which do not have closed form analytical expressions

and thus have to be estimated using numerical optimization methods. The difference in

the number of free parameters between the alternative and the null for each i, c pair is

df(i, c) =
∑

j∈K(|K(j)| − 1) − (|K| − 1). As Ti,c → ∞, we have that Tχ2 → χ2
df with

df =
∑n

i=1

∑
c∈C df(i, c).

For the mice data set, we have Tχ2(obs) = 12811.28 with df = 720 and p-value < 0.0001.

Out of the 48 tests for different (i, c) pairs, 33 produced p-values less than the conservative

Bonferroni level 0.05/48. These results provide strong statistical evidence that knowing the
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current syllable significantly influences the probability of occurrence of the next syllable.

Test for Differences in Contexts across Syllables:

The null hypothesis of interest is H0 : πk|j(i,c) = πk|j(i,c′) = πk|j(i), say, for all c, c′ ∈ C. A

combined Pearson’s Chi-Squared test statistic for testing H0 is given by

Tχ2 =
n∑
i=1

∑
j∈K

∑
c∈C

∑
k∈K(j)

1{nj(i,c) > 0}
(nk|j(i,c) − nj(i,c)π̂k|j(i))2

nj(i,c)π̂k|j(i)
,

where nj(i,c) =
∑

k∈K(j) nk|j(i,c) and π̂k|j(i) is the mle of πk|j(i) under H0. For a fixed i, j pair,

the likelihood function is given by the multinomial probability law

L({Yi,c}n,Si=1,s=1, {πk|(i,c)}c∈C,k∈K , {πk|j(i,c)}c∈C,k∈K(j)) =
∏
c∈C

 ∏
k∈K(j)

π
nk|j(i,c)
k|j(i,c)

 , (1)

Under H0, π̂k|j(i) are thus given by π̂k|j(i) =
∑

c∈C nk|j(i,c)/
∑

k∈K(j)

∑
c∈C nk|j(i,c). The number

of parameters in (1) under H0 is
∣∣{πk|j(i)}k∈K(j)

∣∣ = {|K(j)| − 1}, whereas the number of

parameters under the alternative model is
∣∣{πk|j(i,c)}c∈C,k∈K∣∣ = C{|K(j)|−1}. The difference

is given by df{j(i)} = {K(j) − 1}(C − 1). Therefore, we have Tχ2 → χ2
df with df =∑n

i=1

∑
j∈K df{j(i)} as nj(i,c) →∞.

For the mice data set, we obtained Tχ2(obs) = 5167.109 with df = 684 and p-value

< 0.0001, indicating that the syllable sequences vary significantly across different contexts.

We next performed pairwise comparisons using combined Chi-Squared tests for each pair

of contexts. The results are presented in Table 3. The p-values for all pairwise compar-

isons equal zero, providing strong statistical evidence that all the contexts are also pairwise

significantly different.

UR FE AF AM
UR - 2293.397 2018.810 1238.883
FE - - 875.380 1401.499
AF - - - 614.941
AM - - - -

Table 3: The values in cell (c, c′) represent the observed value of the Chi-squared test statistic
for pairwise comparison between contexts c and c′. All the tests had dfs 228 and all p-values
were < 0.0001.
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